Rational points of Abelian varieties in Γ-extension
نویسندگان
چکیده
منابع مشابه
Density Measure of Rational Points on Abelian Varieties
Let A be a simple Abelian variety of dimension g over , and let ` be the rank of the Mordell-Weil group A( ). Assume ` ≥ 1. A conjecture of Mazur asserts that the closure of A( ) into A( ) for the real topology contains the neutral component A( ) of the origin. This is known only under the extra hypothesis ` ≥ g − g + 1. We investigate here a quantitative refinement of this question: for each g...
متن کاملGroups of Rational Points on Abelian Varieties over Finite Fields
Fix an isogeny class of abelian varieties with commutative endomorphism algebra over a finite field. This isogeny class is determined by a Weil polynomial fA without multiple roots. We give a classification of groups of rational points on varieties from this class in terms of Newton polygons of fA(1− t).
متن کاملAbelian Points on Algebraic Varieties
We attempt to determine which classes of algebraic varieties over Q must have points in some abelian extension of Q. We give: (i) for every odd d > 1, an explicit family of degree d, dimension d − 2 diagonal hypersurfaces without Qab-points, (ii) for every number field K, a genus one curve C/Q with no K ab-points, and (iii) for every g ≥ 4 an algebraic curve C/Q of genus g with no Qab-points. I...
متن کاملSequences of Rational Torsions on Abelian Varieties
We address the question of how fast the available rational torsion on abelian varieties over Q increases with dimension. The emphasis will be on the derivation of sequences of torsion divisors on hyperelliptic curves. Work of Hellegouarch and Lozach (and Klein) may be made explicit to provide sequences of curves with rational torsion divisors of orders increasing linearly with respect to genus....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hokkaido Mathematical Journal
سال: 1973
ISSN: 0385-4035
DOI: 10.14492/hokmj/1381758987